View Synthesis from Image and Video for Object Recognition Applications
نویسنده
چکیده
Title of Dissertation: View Synthesis from Image and Video for Object Recognition Applications Zhanfeng Yue, Doctor of Philosophy, 2007 Dissertation directed by: Professor Rama Chellappa Department of Electrical and Computer Engineering Object recognition is one of the most important and successful applications in computer vision community. The varying appearances of the test object due to different poses or illumination conditions can make the object recognition problem very challenging. Using view synthesis techniques to generate pose-invariant or illumination-invariant images or videos of the test object is an appealing approach to alleviate the degrading recognition performance due to non-canonical views or lighting conditions. In this thesis, we first present a complete framework for better synthesis and understanding of the human pose from a limited number of available silhouette images. Pose-normalized silhouette images are generated using an active virtual camera and an image based visual hull technique, with the silhouette turning function distance being used as the pose similarity measurement. In order to overcome the inability of the shape from silhouettes method to reconstruct concave regions for human postures, a view synthesis algorithm is proposed for articulating humans using visual hull and contour-based body part segmentation. These two components improve each other for better performance through the correspondence across viewpoints built via the inner distance shape context measurement. Face recognition under varying pose is a challenging problem, especially when illumination variations are also present. We propose two algorithms to address this scenario. For a single light source, we demonstrate a pose-normalized face synthesis approach on a pixel-by-pixel basis from a single view by exploiting the bilateral symmetry of the human face. For more complicated illumination condition, the spherical harmonic representation is extended to encode pose information. An efficient method is proposed for robust face synthesis and recognition with a very compact training set. Finally, we present an end-to-end moving object verification system for airborne video, wherein a homography based view synthesis algorithm is used to simultaneously handle the object’s changes in aspect angle, depression angle, and resolution. Efficient integration of spatial and temporal model matching assures the robustness of the verification step. As a byproduct, a robust two camera tracking method using homography is also proposed and demonstrated using challenging surveillance video sequences. View Synthesis from Image and Video for Object Recognition
منابع مشابه
Video-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملImage Based View Synthesis
This dissertation deals with the image-based approach to synthesize a virtual scene using sparse images or a video sequence without the use of 3D models. In our scenario, a real dynamic or static scene is captured by a set of un-calibrated images from different viewpoints. After automatically recovering the geometric transformations between these images, a series of photo-realistic virtual view...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملAccuracy improvement of Best Scanline Search Algorithms for Object to Image Transformation of Linear Pushbroom Imagery
Unlike the frame type images, back-projection of ground points onto the 2D image space is not a straightforward process for the linear pushbroom imagery. In this type of images, best scanline search problem complicates image processing using Collinearity equation from computational point of view in order to achieve reliable exterior orientation parameters. In recent years, new best scanline sea...
متن کامل